This vignette demonstrates how to use duckplyr selectively, for individual data frames or for other packages.
library(conflicted)
library(dplyr)
conflict_prefer("filter", "dplyr")
#> [conflicted] Will prefer dplyr::filter over
#> any other package.
Introduction
The default behavior of duckplyr is to enable itself for all data
frames in the session. This happens when the package is attached with
library(duckplyr)
, or by calling
methods_overwrite()
. To enable duckplyr for individual data
frames instead of session-wide, it is sufficient to prefix all calls to
duckplyr functions with duckplyr::
and not attach the
package. Alternatively, methods_restore()
can be called to
undo the session-wide overwrite after
library(duckplyr)
.
External data with explicit qualification
The following example uses duckplyr::as_duckdb_tibble()
to convert a data frame to a duckplyr frame and to enable duckplyr
operation.
lazy <-
duckplyr::flights_df() |>
duckplyr::as_duckdb_tibble() |>
mutate(inflight_delay = arr_delay - dep_delay) |>
summarize(
.by = c(year, month),
mean_inflight_delay = mean(inflight_delay, na.rm = TRUE),
median_inflight_delay = median(inflight_delay, na.rm = TRUE),
) |>
filter(month <= 6)
The result is a tibble, with its own class.
class(lazy)
#> [1] "duckplyr_df" "tbl_df" "tbl" "data.frame"
names(lazy)
#> [1] "year" "month"
#> [3] "mean_inflight_delay" "median_inflight_delay"
DuckDB is responsible for eventually carrying out the operations. Despite the filter coming very late in the pipeline, it is applied to the raw data.
lazy |>
explain()
#> ┌---------------------------┐
#> │ HASH_GROUP_BY │
#> │ -------------------- │
#> │ Groups: │
#> │ #0 │
#> │ #1 │
#> │ │
#> │ Aggregates: │
#> │ mean(#2) │
#> │ median(#3) │
#> │ │
#> │ ~33677 Rows │
#> └-------------┬-------------┘
#> ┌-------------┴-------------┐
#> │ PROJECTION │
#> │ -------------------- │
#> │ year │
#> │ month │
#> │ inflight_delay │
#> │ inflight_delay │
#> │ │
#> │ ~67355 Rows │
#> └-------------┬-------------┘
#> ┌-------------┴-------------┐
#> │ PROJECTION │
#> │ -------------------- │
#> │ year │
#> │ month │
#> │ inflight_delay │
#> │ │
#> │ ~67355 Rows │
#> └-------------┬-------------┘
#> ┌-------------┴-------------┐
#> │ FILTER │
#> │ -------------------- │
#> │ (CAST(month AS DOUBLE) <= │
#> │ 6.0) │
#> │ │
#> │ ~67355 Rows │
#> └-------------┬-------------┘
#> ┌-------------┴-------------┐
#> │ R_DATAFRAME_SCAN │
#> │ -------------------- │
#> │ data.frame │
#> │ │
#> │ Projections: │
#> │ year │
#> │ month │
#> │ dep_delay │
#> │ arr_delay │
#> │ │
#> │ ~336776 Rows │
#> └---------------------------┘
All data frame operations are supported. Computation happens upon the first request.
lazy$mean_inflight_delay
#> [1] -5.147220 -3.855519 -7.356713 -2.673124 -4.244284 -9.370201
After the computation has been carried out, the results are preserved and available immediately:
lazy
#> # A duckplyr data frame: 4 variables
#> year month mean_inflight_delay median_inflight_delay
#> <int> <int> <dbl> <dbl>
#> 1 2013 2 -5.15 -6
#> 2 2013 1 -3.86 -5
#> 3 2013 3 -7.36 -9
#> 4 2013 4 -2.67 -5
#> 5 2013 6 -4.24 -7
#> 6 2013 5 -9.37 -10
Restoring dplyr methods
The same can be achieved by calling methods_restore()
after library(duckplyr)
.
library(duckplyr)
#> ✔ Overwriting dplyr methods with duckplyr methods.
#> ℹ Turn off with `duckplyr::methods_restore()`.
methods_restore()
#> ℹ Restoring dplyr methods.
If the input is a plain data frame, duckplyr is not involved.
flights_df() |>
mutate(inflight_delay = arr_delay - dep_delay) |>
explain()
#> Error in UseMethod("explain"): no applicable method for 'explain' applied to an object of class "c('tbl_df', 'tbl', 'data.frame')"
Own data
Construct duckplyr frames directly with
duckdb_tibble()
:
data <- duckdb_tibble(
x = 1:3,
y = 5,
z = letters[1:3]
)
data
#> # A duckplyr data frame: 3 variables
#> x y z
#> <int> <dbl> <chr>
#> 1 1 5 a
#> 2 2 5 b
#> 3 3 5 c
In other packages
Like other dependencies, duckplyr must be declared in the
DESCRIPTION
file and optionally imported in the
NAMESPACE
file. Because duckplyr does not import dplyr, it
is necessary to import both packages. The recipe below shows how to
achieve this with the usethis package.
- Add dplyr as a dependency with
usethis::use_package("dplyr")
- Add duckplyr as a dependency with
usethis::use_package("duckplyr")
- In your code, use a pattern like
data |> duckplyr::as_duckdb_tibble() |> dplyr::filter(...)
- To avoid the package prefix and simply write
as_duckdb_tibble()
orfilter()
:- Import the duckplyr function with
usethis::use_import_from("duckplyr", "as_duckdb_tibble")
- Import the dplyr function with
usethis::use_import_from("dplyr", "filter")
- Import the duckplyr function with
Learn more about prudence in vignette("prudence")
, about
fallbacks to dplyr in vignette("fallback")
, and about the
translation employed by duckplyr in vignette("limits")
, and
about the usethis package at https://usethis.r-lib.org/.